Historic Ramsey Town Hall:
Ramsey, MN

Prepared by
Corinne Deger, Morgan Kuehn, Kate Stanger, and
Vanessa Walton

Students in ARCH 5672: Historic Building Conservation
Instructor: Todd Grover
College of Design

Prepared in Collaboration with
Kurt Ulrich
City Administrator, City of Ramsey
The project on which this report is based was completed in collaboration with the City of Ramsey as part of the 2017–2018 Resilient Communities Project (RCP) partnership. RCP is a program at the University of Minnesota’s Center for Urban and Regional Affairs (CURA) that connects University faculty and students with Minnesota communities to address strategic projects that advance local resilience and sustainability.

The contents of this report represent the views of the authors, and do not necessarily reflect those of RCP, CURA, the Regents of the University of Minnesota, or the City of Ramsey.
HISTORIC RAMSEY TOWN HALL

RAMSEY, MINNESOTA

Corinne Deger, Morgan Kuehn, Kate Stanger, and Vanessa Walton
COLLEGE OF DESIGN | UNIVERSITY OF MINNESOTA
1. Introduction
The Ramsey Old Town Hall is located in Ramsey, Minnesota. The primary façade faces roughly East.

It is a small wood framed building with a rectangular footprint. The building is cladded in Chaska brick, and the roof has asphalt shingles. The building has a first floor composed of a handful of rooms supported by wood floor joists. There is a basement that has a small landing and crawl space under the remainder of the first floor.

There have already been some preservation efforts on the building. There is gypsum board on the wood studs throughout the first level. Many of the probable future occupants of the Ramsey Town hall are small businesses. While the city of Ramsey may add a small homage inside the building to its historic significance, it will not be a focus of the reuse.

Considering these factors, we have decided to make recommendations based upon the Secretary of the Interior’s Standards for Rehabilitation.

2. History
The Ramsey Town Hall was built in 1892 as a one room school house referred to as the District No. 28 School. The brick school was built to replace a smaller wood frame school house. It is currently located at 14100 St. Francis Boulevard NW in Ramsey, Minnesota.

From 1892 until 1946, the building served as a modest rural schoolhouse for students from first to eighth grade. The building was constructed of buff colored bricks that were manufactured at the nearby Kelsey Brickyard. It had decorative segmental arches over the doors and windows, and a wood shingled roof. It had a pair of front doors that opened vertically at the center and were topped by a bell for calling students. Upon entering, there was a coat closet for the girls on the right, a water station and entrance to the basement in the center, and a coat closet for the boys and the archway into the classroom on the left. In the classroom, the teacher’s desk was to the right, along the east wall. There was a small closet behind the teacher’s desk. Rows of student desks faced the center of the room, chalkboards were on the back, west wall, and a wood burning stove sat in the back northwest corner. The building had plaster walls with wainscoting, a pressed tin ceiling, arched windows, and no electricity or running water.
Today, the building sits between a bank on its north side, a day care center on its south side, and paved roads on the east and west sides. Originally, the schoolhouse sat on a large lot with a swamp and open land in the back, and an ample front yard with two large oak trees. The students used to play with the toads at the swamp, swing from a swing on the oak trees, and get water from the water pump in front of the building.

Between 1943 and 1944, a local school father, Mr. Pearson, oversaw what is believed to be the first renovations. At this time, the original plaster above the wainscoting was removed from the walls and replaced with a form of paper board that had vertical strips of wood over the seams.

In 1946, the school closed and was converted into a town hall. Until this time, it was common that schools were used as meeting places for the town board. Additionally, as enrollment decreased, many one room school houses in the area were closing and larger schools were being built. In fact, when District No. 28 School closed, it had an enrollment of roughly nine students.\(^1\)

The conversion to a town hall brought many changes to the building. On the exterior, the front door was replaced, the east, north, and south wall windows were replaced with rectangular windows, the west wall windows were bricked in with asphalt brick, asphalt shingles replaced the wood shingles on the roof, and a concrete belt course was added around the building. On the interior, the girl’s coat room was turned into a small kitchen, the small teacher’s closet was removed, the chalk boards were painted yellow, the wood floor was covered with a vinyl flooring, and the paper board was replaced with fiber board. The building served as the Ramsey Town Hall until around 1974 when a new town hall was built.\(^2\)

After being listed in the National Register of Historic Places, rehabilitation of the building began. Currently, the building sits vacant and unfinished with several modern updates throughout.

\(^1\) Alan Pearson and Betty Pearson, “Ramsey Town Hall / District No. 28 School,” interview by Kate Stanger, November 29, 2017.

3. Exterior
The rectangular building is cladded in brick. There is a main entrance with windows on the eastern facade, and windows of various sizes scattered on all other sides.

Front Entrance
The entrance of the building is fitted with particleboard, which has allowed the use of a standard size door in place of what was likely a door and curved transom window.

By the looks of the paint that is left on the brick near top and sides of the particleboard insert, the original wood door and framing was red. The door that is currently present, while functioning, is in poor condition.

Organic matter from bats is piled on the left side of the front door.

There is damage to the threshold of the front door and beyond the entrance exposing what looks to be part of the wood subfloor of the building.
The concrete stoop and steps that lead up to the building have several cracks and are uneven. It appears as if there has been some patching between the steps and the building. There are no hand railings. The building entrance is not currently ADA accessible and the steps are at the wrong rise and run for an entrance.

Recommendations

Primarily, the pile of organic matter at the entrance of the door should be removed. It poses a health hazard.

The building should be outfitted with the proper door and frame. In our research, we learned that the original door was a French door likely topped with a transom window. We’d suggest that a similar door be installed and painted in the same red that is used in other areas on the exterior of the building.

The current concrete steps should be removed and replaced with a system that is ADA compliant. All steps should have uniform riser heights and uniform tread depths. Risers should be 4 inches (100 mm) high minimum and 7 inches (180 mm) high maximum. Open risers are not allowed. Treads shall be 11 inches (280 mm) deep minimum. The radius of curvature at the leading edge of the tread shall be ½ inch (13 mm) maximum. Handrails shall be provided on both sides of stairs and ramps.

Additionally, slopes on the wheelchair ramp should be at a 1:12 ratio which equals 4.8 degrees slope (one foot of wheelchair ramp for each inch of rise). A minimum of 5' x 5' flat areas unobstructed should be at the top and bottom of the wheelchair ramp with a minimum width of 36 inches of clear space across the ramp.

Brick

The façade is covered in a yellow Chaska brick veneer. While there have been some repairs to several sections of the facade; there are still a few problem areas. On the front facade, the use of plywood around the door caused gaps in between the plywood and the brick. These gaps gave us an opportunity to get a better look at the wood structure without taking out any bricks.

The North and South brick facades are warping leading us to speculate that the metal ties or other material attaching the veneer to the wood has deteriorated, most likely due to rusting from water exposure. Additionally, because of the accessible gaps, there were leaves and debris in between the wood frame and brick façade.

There is some deterioration of the brick caused by humans. Many of the bricks have carvings and etchings.
Additionally, there are a series of chips in the brick on the South facade that appear to be in a gunshot pattern.

![Figure 12 – Gunshot Pattern in Brick](image)

There are multiple areas where there is broken brick. This is most evident on the window sills on the North and South elevations, around the front entrance, and on the chimney on the West elevation. This damage could have been caused by humans, objects hitting the brick, or water damage.

![Figure 13 – Broken Brick at Corner](image)

There is also deterioration of the brick that was caused by the environment. There are bricks on all four facades that are experiencing spalling, especially near the entrance of the building. Spalling is caused by water being absorbed into the brick and cracking the front face of the brick when the water freezes, therefore, it is evidence that water is not able to drain properly behind the veneer. The freezing and thawing of water can also crack large parts of the brick off in the locations noted previously.

![Figure 14 – Environmental Degradation](image)

Figure 15 shows several small holes where a sign may have been hung in the past.

![Figure 15 – Holes in Brick from Sign](image)
There are also some metal brackets in the façade; these were where electric lines and some services were connected.

There are several sections of the primary façade where it looks like some repointing has taken place, specifically under the window on the right-hand side, where the mortar is a different color, and to the top of the circular window at the top of the structure. Figures 18, 19 and 20 show other areas where repointing was done, including the chimney. The mortar joints where the repointing was done are much more prominent due to the following characteristics: over-grinding during repointing process damaged the brick around the repointed areas, a different color of mortar was used, possibly a different strength of mortar was used, and the size of the mortar joints are larger. The mortar is supposed to be weaker than the brick so that it cracks before the brick can.
There have been some attempts to repair some of the damaged brick in several places. Several of the repairs are closer to the concrete foundation on the Southern elevation. However, rather than replacing the brick that was broken off, concrete or mortar was used to fill in the broken pieces.

In one location, area of brick that was smeared with mortar on the rear elevation. The concrete curb that is located around the base of the North, South, and West elevations is most likely covering up deteriorated brick.

There are a couple of bricks that look like they were replaced with a different type of brick. The new bricks don’t have the same coloring as the Chaska brick; they have more hints of red than yellow. These replacement bricks look like they have been damaged, which implies that they aren’t as strong as the original Chaska brick.

There is a pipe that runs from the basement to the exterior on the North elevation. The area around the pipe was not filled in, so there is currently a hole in the wall that exposes the wood structure.

In addition to cracked brick and mismatched mortar, the chimney is missing a cap.
Recommendations
Any repointing done going forward must be done in a manner so as not to not grind into the bricks while removing the mortar. The mortar and brick used for any replacements must be of quality strength and grades as the original.³

If possible, use Chaska brick when replacing damaged bricks. Bricks could potentially be found at a salvage site, new Chaska bricks could be special ordered and produced, or bricks from the basement that are no longer visible could be used. If Chaska bricks are not available, find a brick of a similar strength, size, porosity, and color. A chimney cap matching the brick should be added.

Carvings in the brick are not currently a problem. Some would argue that leaving them provides a specific aesthetic that is worth keeping. However, spalling and holes should be repaired. The large penetration in the brick around the pipe should be repaired, and sealant should be applied.

The ties holding the brick veneer against the wood structure underneath should be reinforced. This project is priority.

The mortar that is covering the brick should be removed if possible. This process must be done by hand without damaging the brick. Replace the bricks as needed.

Exterior Windows
There are eleven windows on this building. There are three double hung wood windows on the side elevations with a two-over-two dividing lite orientation, four wood windows on the rear elevation with a single vertical division, and one circular window on the front elevation. The windows have a wood frame and a vinyl side jamb.

The painting around the frame is patchy, and there is caulk missing around the window frames.

A pane is broken on one of the windows on the rear elevation. It is our understanding that the windows were replaced in 1946, but we do not have any confirmation about other replacements. We have been assuming that the windows were replaced again around 1990 because the existing windows appear to be newer since they are in decent condition. The paint has worn around the frame, which exposes the wood. If the windows were older than 1990, then there would be significant deterioration from the lack of maintenance. We found a tag in that states Marvin Windows is the manufacturer.

The brick around the top of the windows is arched which means that the tops of the windows were potentially curved as well. We could not find a photograph that would confirm this, so further research would be needed. We also could not confirm what kind of glass was in the front circular window. In general, there does not seem to be any major deterioration from mold or insects.

Recommendations

If replacement of the windows is possible, replacements should have a curved upper sash, and the window divisions should be preserved. The following recommendations should be considered if replacement of the entire window is not possible.

The sashes and other portions of window showing mold should be replaced. The window frames should be painted to match the fascia/soffit. Broken and missing glass, like on the rear elevation, should be replaced with clear glass. The window frames should be secured to the wooden structure, and caulkling should be installed around the interior and exterior frame to create a seal.

For the front circular window, the plywood should be removed, and glass should be installed. If another style/pattern of glass is found when doing more research, then replace with what is historically appropriate.

The interior and exterior portions of the window should be cleaned. Harsh chemical cleaners should be avoided. Consult Marvin Windows for a proper cleaning method.

Roof

The existing roof has asphalt shingles, and the soffit and fascia are solid wood. The original roof has wood shingles. We could not access the roof to determine the condition, but the shingles appear to be in poor condition. Many of the shingles are not flat, meaning water is being shedding improperly.

![Asphalt Shingles](image URL)

The apex of the roof appears to be split. This could be due to the walls not providing enough support to the roof, so the roof is slowing failing. It could be due to the wood shrinking over time as well. There are pieces of the soffit and fascia that have fallen off, and there are holes in the soffit on the West elevation.

Moss and other vegetation is growing on the roof, especially on the west side near the chimney. This observation supports our assumption that the roof is not shedding water properly. There are not any gutters on the building.

Recommendations
The roof ridge should be sealed, and a professional should be consulted to determine the cause of the split roof. We believe this could be from a lack of support from the walls since the brick veneer and wood frame are not properly secured to one another, but a professional would confirm.

The soffit and fascia should be repaired with wood similar to the existing. They should then be painted.5

Additionally, the roof should be re-shingled, and any holes should be repaired. The new roof material can be asphalt shingles, but wooden shingles would be more appropriate. The roof and chimney must be properly flashed.

Concrete
There is a concrete curb that runs from the side elevations to the rear elevation. It is not original or historic. It was most likely installed to cover up deteriorated brick in addition to providing structural support to the wall. The settling of the concrete could be cracking the brick behind. There is no sealant between the concrete and the brick. The concrete has major cracks that is allowing water to penetrate the structure.

The concrete is covering up two garden level windows on the North and South elevations. These windows can be seen while standing in the basement.

3. Entry Hall & Main Room
The entry hall is the first room inside the Ramsey Town Hall. It is a small room that contains the stairwell to the basement and leads to the main room. The main room is a large open space just off the entry hall that was formerly the classroom of the original school house. In both room, the conditions of the walls and floors are similar and, therefore, will be addressed together.

Walls
The original walls were removed and replaced with fiber boards during a previous renovation. The fiber boards have since been replaced with modern gypsum board on the top two thirds of the wall and particle board on the bottom third, presumably to recreate the original wainscoting. There is also a large rectangular hole cut in the gypsum board above the front door. On the interior, the walls appear structurally sound and have no apparent water damage. The gypsum board has been tapped and mudded, but not been treated with a primer.

As evidenced by rodents and loose insulation, the exposed gas line on the west wall of the main room is not sealed or insulated correctly.

Recommendations
The cracks in the concrete should be sealed. Additionally, the joint where the bricks meet the concrete should be sealed.

If there are future plans to remove the concrete, the following is recommended. The concrete should be removed carefully as to not damage the garden level window lintels. The brick veneer should be reattached to the wood stud wall, and damaged bricks should be replaced.

We recognize that the use of the concrete was a solution to an issue. However, we strongly recommend that no new concrete is installed, and other solutions are pursued in the future.
Recommendations

Much of the interior integrity has been compromised, since none of the current wall material is original. Therefore, further alterations are not strictly discouraged.

However, effort should be taken to match the original wall design including matching the bottom paneling and applying a paint color that matches the original.

All walls and window interiors should be cleaned of debris and primed before applying paint to ensure a more even application. Preservation Brief 28: Painting Historic Interiors should be consulted when choosing a paint color. Following the brief, it will be best to match the new paint color to the historic wall color, if possible. If the original paint color cannot be determined, a color that is historically appropriate for both the time period and function of the building is recommended.6

In the entry hall, the hole above the front door may be exposed as a transom window once a new door has been added. If not, the hole must be patched to match the rest of the wall.

In the main room, the original chalk boards, which are still present on site, should be incorporated in the adaptive reuse and restored to their original location on the west wall. An expert should be consulted to inspect the gas line.

Floors

Approximately half of the original wood floor is intact in the entry hall. A section of the original flooring has been removed immediately upon entry. The subfloor that remains has significant damage from exposure to the weather.

Throughout the main room, the original wood flooring is intact. Unfortunately, redesign of the interior walls has left holes in the floor. There are holes along the north and south walls for venting to the basement. There is a small amount of water damage on the boards in the doorway to the bathroom.

Overall, the original flooring in both rooms is very dirty, there are some holes along the wood grain caused by wear and previous renovations, and there is remnant of adhesive from the vinyl flooring.

Recommendations
Restoration of the existing floor should be based on the Secretary of the Interior’s Standards for Rehabilitation. Overall, the floors need to be cleaned and sanded to remove debris and adhesive. According to SOIS, both chemical and physical treatments may be undertaken in the gentlest means possible. If necessary, complementary wood flooring which matches in design, color, texture, and possibly material, should be used to fill in any spaces of missing flooring.

Finally, a protective coating should be applied.

In the entry hall, replacement of the front door should help protect the floor from further deterioration due to weather exposure. If not, a more durable flooring choice may appropriate around the threshold, since the original flooring is no longer intact.

In the main room, the minimal water damage should be examined to determine its full extent, otherwise, it is not enough to make the flooring structurally unsound.

Stairwell
The stairwell is located in the entry hall. The walls and ceiling of the stairwell have been covered in modern gypsum board, however the joints have not been taped or mudded and are starting to pull from the frame. In current condition, the stairs appear sturdy but have no railing.

Recommendations
The gypsum board should be removed to determine the cause of it pulling from the wall. If no distinguishable cause can be determined, the boards may just need to be taped, mudded, and primed for painting.

The treads of the steps need further examination to determine wear. A railing should be added that meets the building code height of 36 inches above the tread.

4. Bathroom
The bathroom is situated off the main room and was originally a coat closet, and then was used as a small kitchen.

Walls
The original walls were removed and replaced with fiber boards during a previous renovation. The fiber boards have since been replaced with modern gypsum board on the east and south walls. Behind the plumbing fixtures on the north wall are moisture resistant gypsum boards. Moisture resistant boards are also located on the bottom section of the west wall.

On the interior, the walls appear structurally sound and have no apparent water damage. The gypsum board has been tapped and mudded, but not been treated with a primer.

Recommendations
Much of the interior integrity has been compromised, since none of the current wall material is original. Therefore, further alterations are not strictly discouraged. However, effort should be taken to match the original wall design when applying paint.

As with the wall in the entry hall and main room, the walls should be cleaned of debris and primed before applying paint to ensure a more even application. Preservation Brief 28: Painting Historic Interiors should be consulted when choosing a paint color. Following the brief, it will be best to match the new paint color to the historic wall color, if possible. If the original paint color cannot be determined, a color that is historically appropriate for both the time period and function of the building is recommended.8

Additionally, since a water-resistant material such as tile is suggested for spaces with water such as bathrooms, tile that is historically appropriate for both the time period and the function of the building is recommended.

Floors
There are no original floors in the bathroom, there is only a subfloor.

Recommendations
As with the walls, a water-resistant material is suggested for the floors of bathrooms. Tile that historically appropriate for both the time period and the function of the building is recommended.

Plumbing
The bathroom is currently fitted with a toilet stack, and hot and cold taps and a drain pipe for a sink.

Recommendations
The exposed plumbing does not appear to be connected to a running water supply and is therefore not likely to cause water damage. If the plumbing is to be used, an expert should inspect them to ensure they are in working order and that none have burst or are leaking.

5. General Interior
There are three elements present in each of the three rooms. They are ceiling, electrical outlets, and baseboards and trim.

Ceiling
As of late 1970s, the original pressed tin ceiling was still present throughout the building. Currently, however, the ceiling is a drop ceiling covered with modern gypsum board with four open electrical boxes.

Recommendations
In order to determine whether or not the original tin ceiling still remains, it is necessary to remove a portion of the current drop ceiling to examine what is above.

If the original ceilings are still intact, they should be cleaned and restored with the gentlest methods as per the Secretary of the Interior’s Standards for Rehabilitation.

If any of the original ceiling has been damaged throughout renovation, or if the original ceiling is missing and a replica is desired, the replacement should match in design, color, texture, and material as per the Secretary of the Interior’s standards for Rehabilitation.

Electric Boxes
There are approximately 16 open electrical boxes throughout the first floor of the building. These include electrical outlets, light switches, wall lights, and ceiling lights.

Recommendations
A licensed electrician should be consulted to inspect the existing electrical boxes. Before work can begin, it is necessary to ensure that the electrical has been installed correctly and to code. After inspection, all boxes should be fitted with plates or light fixtures.

Baseboards and Trim
Currently, there are no baseboards or trim throughout the building.

Recommendations
Unfortunately, historical research did not identify the existence or type of the original baseboards and trim. However, historically, such decorative elements would likely have been present, especially in connection with the wainscoting. Because the original design is not known, one that is historically appropriate for both the time period and function of the building is recommended.

Additionally, following the Secretary of the Interior’s Standards for Rehabilitation, any new materials should be documented and distinguished from historical elements. ⁹

Figure 39 – Main Room, West Wall

6. Basement
The basement is one level below ground. However, the first-floor joists are a few feet above grade. The stairs to the basement are positioned near the middle of the structure, between the entry hall and main room. The stairs lead down to a small landing. A shallow crawl space is under the remaining rectangular footprint of the building.

Stairs
The staircase down to the basement is made of sawn timber, which is painted yellow. There are two stringers underneath the walking treads. These members are attached with nails. The stair does not appear to be from the original construction.

Recommendations
The stairs should be investigated by an engineer. When on the stairs, they feel less than stable. If recommended, follow replacement or stabilization guidelines made by the engineer.

The stairs are not historically significant. However, the wood construction retains the character of the building as recommended in Standard 2. If replacement is necessary, a dissimilar assembly should be avoided if possible.

Masonry Wall
At the base of the stairs, a masonry wall surrounds the landing. A portion of the wall is rounded and is composed of clay masonry. The other portion is composed of concrete masonry. They are connected with a thick grouted joint.

The clay masonry appears to be part of original construction; however, it may have served a different purpose. The wall appears to be stable, and a majority of the masonry units are in excellent condition.

The concrete masonry, which is painted cream, was installed after initial construction. There are a number of vertical cracks in the wall, but the units appear fairly intact.

Recommendations
The clay masonry portion of the wall is in good condition. The units should be examined with better lighting conditions; however, no major issues were initially discovered that require remediation.

The concrete masonry wall should be examined. Cracks in below-grade structures can cause complications with soil pressures and ground water flow. Sealing and stabilizing the cracks may be the best option.
Exterior Wall
There are clay masonry walls defining the exterior bounds of the basement. It is the same Chaska brick that covers the exterior façade of the building.

Directly under the upper floor, there appears to be a wooden lath covered with a type of cementitious material. It extends down for about one foot. The extent the cementitious material covers the lath varies throughout.

A window in the wall is visible across the crawl space on the West façade. It appears to be original and is covered from the outside. The original construction may have included a similar window mirrored on the North façade.

Recommendations
The brick and lath system, which appears to be original, is performing well. There does not appear to be holes or cracks to the exterior elements.

Standard 5 states property characterizing elements should be preserved, making the original window of interest. Even if reinstallation is not desired, the window should be inspected and removed intact if possible. The hole after window removal can be filled with brick to match the historic.

Figure 42 – Exterior Basement Window

Floor Joists
The structure of the upper floor is wooden floor joists supported on the side exterior faces of the building. A large beam that runs down the center of the structure also supports them. The joists appear to be largely original; however, there are some places where replacement sawn lumber has been installed.

There is wooden cross bracing between each of the joists. They are attached with nails; however, the cross bracing appears to be disconnected.

Recommendations
The joists appear to be structurally stable; however, an engineer should conduct an analysis on their capacity in order to provide more insight. Reinforcements may need to be added.

The current lumber floor joist reinforcements and replacements are acceptable. If possible, any future replacements should resemble the historic joists as per Standard 6.

The necessity for the cross bracing should be determined by an engineer. If they are unnecessary, it may be appropriate to remove the bracing from the system as it does not add historic significance.
A few of the floor joists appear to not rest on the intermediate beam. Their natural lower elevation is about one centimeter above the beam. The joists may need to be realigned to provide the intended load path.

Beams and Supports
The transfer beam supporting the floor joists in the middle of the structure is not original as it is engineered lumber. It is unclear if the initial construction had any beam.

The beam has multiple supports along its length to the soil and masonry below. The supports range in stability from a large post to multiple stalked 2x4s. The supports are not securely attached to the transfer beam or soil below.

Recommendations
The beam appears to be in good condition. While it is not original, it appears to serve an important structural related function. An engineer should verify the capacity of the transfer beam is sufficient for its demand.

The structural supports of the beam are extremely unsafe. They are not code compliant, and they offer very little stability. Large posts should be used for all of the supports. Additionally, the beam should be securely connected to the support, and the support should be securely connected to the soil or masonry base.

Shoring will be needed to provide temporary support during reinforcement or installation. An engineer should be consulted to create a safe plan.
Utilities
There are a variety of utility lines and conduits scattered across the small landing in the basement. It is not clear if they are dormant or active. Some PVC pipes and conduits are draping from the ceiling.

There is also a hole in the exterior wall of the structure that appears to be for plumbing. However, nothing is attached on the inside or outside of the building.

Recommendations
All of the wires and conduits must be organized and secured. It poses a safety risk to have them in their current configuration.

The hole is not original to the structure. It should either be used to provide modern amenities or taken out. The discontinuity can be easily patched with cementitious material.

Crawl Space
More than seventy percent of the basement is composed of crawl space. There is about three to four feet of space between the bottom of the floor joists and the soil. It is filled with what appears to be construction and renovation debris.

Recommendations
This entire area must be cleared out. The debris, in conjunction with improper utility grounding, poses a fire risk.

Additionally, the building’s stability cannot be determined until all structural element are examined individually. The debris makes this analysis impossible. Once it is cleared, an engineer should evaluate the floor joists and exterior walls in the crawl space.
7. High Priority List

Exterior
1. Reinforce the ties that hold the brick veneer to the wood frame structure underneath. A professional should be brought in to confirm.
2. Remove the organic matter and plywood door. Replace with red French door and transom window.
3. Repour steps to code and make the entrance ADA accessible.
4. Re-shingle the roof.
5. Paint all wood surfaces (i.e. window frames/trim, soffit, fascia)
6. Replace broken glass with clear glass.

First Floor
1. Replace the door to stop further destruction to the subfloor at the threshold
2. Add baseboards and trim
3. Finish walls: patch holes, prime, paint
4. Add railing to the basement steps

Basement
1. Clean crawl space and landing area
2. Hire an engineer to investigate all areas discussed above. Follow their structural suggestions
3. Replace and stabilize beam supports
4. Add stair railing for code compliance.
5. Professionals should be consulted to fix the plumbing, gas, electrical, etc.

8. Moving the Building
We recommend that the building is not moved to another location. Moving the building will remove both the historic context and the current context. If the building was moved, then the bank located next to the Town Hall would lose its architectural context. The bank’s roof, siding, and overall design are very similar to the Town Hall. Also, the building may not survive the move. The building’s walls and structure would need to be repaired before it is moved, and the bricks would need to be handled very carefully so they aren’t damaged.

The process of moving a building can be very expensive, so we recommend that the money budgeted towards such an endeavor be used to repair/restore other historic buildings in Ramsey, MN.

9. Authors
The authors of this report are Corinne Deger, Morgan Kuehn, Kate Stanger, and Vanessa Walton. Guidance was provided from the Historic Building Conservation course instructor, Todd Grover.

The report was prepared in conjunction with the Resilient Communities Project and City of Ramsey on December 15th, 2017.